122 research outputs found

    Fuzzy modeling by hierarchically built fuzzy rule bases

    Get PDF
    AbstractAlthough Mamdani-type fuzzy rule-based systems (FRBSs) became successfully performing clearly interpretable fuzzy models, they still have some lacks related to their accuracy when solving complex problems. A variant of these kinds of systems, which allows to perform a more accurate model representation, are the so-called approximate FRBSs. This alternative representation still cannot avoid the problems concerning the fuzzy rule learning methods, which as prototype identification algorithms, try to extract those approximate rules from the object problem space. In this paper we deal with the previous problems, viewing fuzzy models as a class of local modeling approaches which attempt to solve a complex problem by decomposing it into a number of simpler subproblems with smooth transitions between them. In order to develop this class of models, we first propose a common framework to characterize available approximate fuzzy rule learning methods, and later we modify it by introducing a fuzzy rule base hierarchical learning methodology (FRB-HLM). This methodology is based on the extension of the simple building process of the fuzzy rule base of FRBSs in a hierarchical way, in order to make the system more accurate. This flexibilization will allow us to have fuzzy rules with different degrees of specificity, and thus to improve the modeling of those problem subspaces where the former models have bad performance, as a refinement. This approach allows us not to have to assume a fixed number of rules and to integrate the good local behavior of the hierarchical model with the global model, ensuring a good global performance

    A proposal on reasoning methods in fuzzy rule-based classification systems

    Get PDF
    AbstractFuzzy Rule-Based Systems have been succesfully applied to pattern classification problems. In this type of classification systems, the classical Fuzzy Reasoning Method (FRM) classifies a new example with the consequent of the rule with the greatest degree of association. By using this reasoning method, we lose the information provided by the other rules with different linguistic labels which also represent this value in the pattern attribute, although probably to a lesser degree. The aim of this paper is to present new FRMs which allow us to improve the system performance, maintaining its interpretability. The common aspect of the proposals is the participation, in the classification of the new pattern, of the rules that have been fired by such pattern. We formally describe the behaviour of a general reasoning method, analyze six proposals for this general model, and present a method to learn the parameters of these FRMs by means of Genetic Algorithms, adapting the inference mechanism to the set of rules. Finally, to show the increase of the system generalization capability provided by the proposed FRMs, we point out some results obtained by their integration in a fuzzy rule generation process

    Métricas sobre la robustez de soluciones en el problema TSALB ante la variación del mix de producción

    Get PDF
    Aplicación de métricas de robustez a configuraciones de línea en TSALBP - Ejemplo prototipo.Partiendo de la familia de modelos TSALBP (Time and Space Assembly Line Balancing Problem), proponemos diversas funciones para medir la robustez de un equilibrado de línea atendiendo a sus atributos temporales y espaciales. La versión robusta de TSALBP considera un conjunto de escenarios de demanda y presenta funciones que miden el exceso de carga, tanto temporal como espacial, en las estaciones de trabajo de la línea. Dichas funciones pueden emplearse como funciones objetivo en el problema de optimización resultante y como métricas ante un equilibrado de línea concreto; en ambos casos, la nueva versión de TSALBP pone a disposición del decisor nuevas soluciones de equilibrado más eficientes y robustas ante una demanda incierta.Preprin

    Why simheuristics? : Benefits, limitations, and best practices when combining metaheuristics with simulation

    Get PDF
    Many decision-making processes in our society involve NP-hard optimization problems. The largescale, dynamism, and uncertainty of these problems constrain the potential use of stand-alone optimization methods. The same applies for isolated simulation models, which do not have the potential to find optimal solutions in a combinatorial environment. This paper discusses the utilization of modelling and solving approaches based on the integration of simulation with metaheuristics. These 'simheuristic' algorithms, which constitute a natural extension of both metaheuristics and simulation techniques, should be used as a 'first-resort' method when addressing large-scale and NP-hard optimization problems under uncertainty -which is a frequent case in real-life applications. We outline the benefits and limitations of simheuristic algorithms, provide numerical experiments that validate our arguments, review some recent publications, and outline the best practices to consider during their design and implementation stages

    La pandemia por COVID-19 analizada desde la Reducción de Riesgo a Desastres, el Sistema Nacional de Seguridad y el Desarrollo Sostenible

    Get PDF
    La Pandemia por COVID-19 y su estudio desde la reducción de riesgo a desastres es el principal motivo de este artículo. Se estudió desde la teoría de sistemas la interacción entre el Sistema Nacional de Seguridad, el Sistema CONRED y el Sistema de Planificación del país, liderado por SEGEPLAN, para entender las principales características de la pandemia por COVID-19 y resolver varias preguntas, principalmente: ¿Es La Pandemia por COVID-19 considerada un desastre?Los sistemas estudiados tienen la característica de identificar al ser humano como el centro de su actuar y por ende, la salud es un elemento indispensable para lograr su bienestarEl estudio busca tener respuestas a preguntas realizadas respecto a la pandemia y su vinculación con la reducción de riesgo a desastres. Para este estudio uno de los principales actores consultados fue Allan Lavell, actor contemporáneo de la reducción del riesgo a desastres, así como la experiencia de los autores

    ARTxAI: Explainable Artificial Intelligence Curates Deep Representation Learning for Artistic Images using Fuzzy Techniques.

    Get PDF
    Automatic art analysis employs different image processing techniques to classify and categorize works of art. When working with artistic images, we need to take into account further considerations compared to classical image processing. This is because such artistic paintings change drastically depending on the author, the scene depicted, and their artistic style. This can result in features that perform very well in a given task but do not grasp the whole of the visual and symbolic information contained in a painting. In this paper, we show how the features obtained from different tasks in artistic image classification are suitable to solve other ones of similar nature. We present different methods to improve the generalization capabilities and performance of artistic classification systems. Furthermore, we propose an explainable artificial intelligence method to map known visual traits of an image with the features used by the deep learning model considering fuzzy rules. These rules show the patterns and variables that are relevant to solve each task and how effective is each of the patterns found. Our results show that compared to multi-task learning, our proposed context-aware features can achieve up to 19% more accurate results using the ResNet architecture and 3% when using ConvNext. We also show that some of the features used by these models can be more clearly correlated to visual traits in the original image than others

    Masa en aurícula derecha

    Get PDF
    A 61 year-old man, with previous history of ischemic heart disease and atrial fibrillation was admitted due to shortness of breath, being a right atrium mass detected by echocardiography.Varón de 61 años con antecedentes de cardiopatía isquémica y fibrilación auricular que ingresa por insuficiencia cardíaca. En el estudio ecocardiográfico se detecta una masa en la aurícula derecha

    Plasma extracellular vesicles reveal early molecular differences in amyloid positive patients with early-onset mild cognitive impairment

    Get PDF
    In the clinical course of Alzheimer's disease (AD) development, the dementia phase is commonly preceded by a prodromal AD phase, which is mainly characterized by reaching the highest levels of Aβ and p-tau-mediated neuronal injury and a mild cognitive impairment (MCI) clinical status. Because of that, most AD cases are diagnosed when neuronal damage is already established and irreversible. Therefore, a differential diagnosis of MCI causes in these prodromal stages is one of the greatest challenges for clinicians. Blood biomarkers are emerging as desirable tools for pre-screening purposes, but the current results are still being analyzed and much more data is needed to be implemented in clinical practice. Because of that, plasma extracellular vesicles (pEVs) are gaining popularity as a new source of biomarkers for the early stages of AD development. To identify an exosome proteomics signature linked to prodromal AD, we performed a cross-sectional study in a cohort of early-onset MCI (EOMCI) patients in which 184 biomarkers were measured in pEVs, cerebrospinal fluid (CSF), and plasma samples using multiplex PEA technology of Olink© proteomics. The obtained results showed that proteins measured in pEVs from EOMCI patients with established amyloidosis correlated with CSF p-tau181 levels, brain ventricle volume changes, brain hyperintensities, and MMSE scores. In addition, the correlations of pEVs proteins with different parameters distinguished between EOMCI Aβ( +) and Aβ(-) patients, whereas the CSF or plasma proteome did not. In conclusion, our findings suggest that pEVs may be able to provide information regarding the initial amyloidotic changes of AD. Circulating exosomes may acquire a pathological protein signature of AD before raw plasma, becoming potential biomarkers for identifying subjects at the earliest stages of AD development

    Genome-wide association analysis of dementia and its clinical endophenotypes reveal novel loci associated with Alzheimer's disease and three causality networks : The GR@ACE project

    Get PDF
    Introduction: Large variability among Alzheimer's disease (AD) cases might impact genetic discoveries and complicate dissection of underlying biological pathways. Methods: Genome Research at Fundacio ACE (GR@ACE) is a genome-wide study of dementia and its clinical endophenotypes, defined based on AD's clinical certainty and vascular burden. We assessed the impact of known AD loci across endophenotypes to generate loci categories. We incorporated gene coexpression data and conducted pathway analysis per category. Finally, to evaluate the effect of heterogeneity in genetic studies, GR@ACE series were meta-analyzed with additional genome-wide association study data sets. Results: We classified known AD loci into three categories, which might reflect the disease clinical heterogeneity. Vascular processes were only detected as a causal mechanism in probable AD. The meta-analysis strategy revealed the ANKRD31-rs4704171 and NDUFAF6-rs10098778 and confirmed SCIMP-rs7225151 and CD33-rs3865444. Discussion: The regulation of vasculature is a prominent causal component of probable AD. GR@ACE meta-analysis revealed novel AD genetic signals, strongly driven by the presence of clinical heterogeneity in the AD series

    Common variants in Alzheimer’s disease and risk stratification by polygenic risk scores

    Get PDF
    Funder: Funder: Fundación bancaria ‘La Caixa’ Number: LCF/PR/PR16/51110003 Funder: Grifols SA Number: LCF/PR/PR16/51110003 Funder: European Union/EFPIA Innovative Medicines Initiative Joint Number: 115975 Funder: JPco-fuND FP-829-029 Number: 733051061Genetic discoveries of Alzheimer's disease are the drivers of our understanding, and together with polygenetic risk stratification can contribute towards planning of feasible and efficient preventive and curative clinical trials. We first perform a large genetic association study by merging all available case-control datasets and by-proxy study results (discovery n = 409,435 and validation size n = 58,190). Here, we add six variants associated with Alzheimer's disease risk (near APP, CHRNE, PRKD3/NDUFAF7, PLCG2 and two exonic variants in the SHARPIN gene). Assessment of the polygenic risk score and stratifying by APOE reveal a 4 to 5.5 years difference in median age at onset of Alzheimer's disease patients in APOE ɛ4 carriers. Because of this study, the underlying mechanisms of APP can be studied to refine the amyloid cascade and the polygenic risk score provides a tool to select individuals at high risk of Alzheimer's disease
    corecore